Mathematical core

The Veeroute optimization engine rapidly solves scheduling and planning problems such as those that occur in last mile delivery, fleet management, long haul delivery and managing field service engineers.

The optimization engine’s main component is a mathematical core which solves combinatorial problems. It finds an optimal combination which satisfies the constraints and requirements in a finite discrete search space.

The mathematical core includes the following components:


This module offers more than 100 algorithms which solve combinatorial problems. It includes well-known algorithms such as simulated annealing, ruin-and-recreate and 2-opt as well as proprietary algorithms that solve specific problems. It also includes proprietary clustering algorithms which consider details such as roads, traffic and obstacles.

Routing models

These models offer different route calculation options. Some account for the penalties you’ll incur if you don’t meet customer requirements such as delivery time windows. Others account for time-based variations such as the time your drivers spend in transit or at a warehouse loading or unloading vehicles and completing documents.


Configurations are combinations of algorithms and routing models. They also include information about how to apply algorithms and routing models to solve a problem. The optimization engine automatically selects the best configuration for your problem and your dataset.

A configuration could include rules such as:

  • Run a set of selected algorithms several times. Since there is randomness in the algorithms, the same algorithm may produce different results on the same input dataset.
  • Choose the 5 best results.
  • Use the best result as a first approximation for another set of algorithms and try to improve it within 10 minutes.
The Mathematical Core Of The Veeroute Cloud-Based Combinatorial Optimizer Contains Over 100 Algorithms, Over 10 Routing Models And Over 240 Configurations

Nearly every business faces a variety of planning, scheduling and structural challenges which they can address with combinatorial optimization. Today, Veeroute can help you solve them.